

Memo

SINTEF Digital SINTEF Digital Address:

NO-NORWAY

Switchboard: +47 73593000

info@sintef.no

Enterprise /VAT No: NO 919 303 808 MVA

D4.1 First version underwater vehicle integrated with oceanographic sensors

PERSON RESPONSIBLE / AUTHOR Frederic Py

FOR YOUR
ATTENTION
COMMENTS AF
INVITED
FOR YOUR
INICIDENTION
AS AGREED

		P. F.	CON	FOR	AS A
DISTRIBUTION					
Frederic Py					
Esten Ingar Grøtli					
Morten Omholt Alver					
PROJECT NO	DATE	CLASSII	FICATION	J	
267793	2018-06-08	Open			

This memo gives a quick comparison of the two vehicles we plan to use for INDORSE experiments. Those two vehicles, while using similar platform (LAUV), are equipped with widely different sensor suites as one – the Fridtjof – is targeted to benthic survey and ocean floor mapping and the other – the Harald – is targeted instead for oceanic water column surveys and mapping of bio-chemical properties of the water masses.

While this distinction result on widely different hardware the software underneath share the same software architecture and control components. Beyond this the two vehicles can be seen as complementary which give greater opportunity for distributed autonomous collaboration (as one vehicle sensory input could trigger new objectives more fit for the other vehicle and vice-versa)

The table is structured as follow:

- Description of the target application of the assets
- General properties of the vehicle themselves
- Communication devices
- Localisation devices/capabilities
- Application specific sensors

	LAUV FRIDTJOF	LAUV HARALD		
Target applications	Acoustic mapping Bottom mosaic building Substrate identification Benthos characterization	Water column characterization Environmental profiling Upper water acoustic tracking Sound speed measurement		
Length (cm)	180	240		
Weight in AIR (kg)	25.8	32.1		
Max depth (m)	100	100		
Speed (m/s)	0.5 - 2.0			
Endurance (H)	8	24		
Data storage (Gb)	16+64	16		
CPU	AMD Geode LX 800 (x86 architecture)			
Communication	WLAN (1km) GSM 3G acoustic modem (1km) Evologics S2CR 18/34 USBL Iridium satellite			
	Emergency acoustic pinger (2km)			
Localization	ation GPS			
	Doppler Velocity Logger (DVL), Nortek DVL 1MHz Attitude & Heading Reference System (AHRS) aided by DVL			
	IMU Microstrain 3DM GX4-25			
Other sensors	HD downward looking camera Lumenera Le165 w/ LED ligthing	Conductivity, Temperature, Density (CTD) Seabird SBE 49 FastCAT		
	Sidescan sonar Deepvision OSM2	Furomter/turbidity WetLabs EcoPuck Triplet		
	Forward looking sonar Imagenex 852	Oxygen Aanderaa Optopode 4831F		

PROJECT NO / FILE NO 2 of 2