

Presentation of MSc's Thesis

'A Framework for Building Transient Well Testing Numerical Models Using Unstructured Grids'

By: Ahmed Galal Al-Qassaby Al-Metwally

Under Supervision Of:

Mohammed H. Sayyouh

Professor in Petroleum Engineering Department Professor in Petroleum Engineering Department **FECU**

Ahmed H. El-Banbi

FECU

Examined By:

Khaled A. Abdel-Fattah

Professor in Petroleum Engineering Department **FECU**

Mohamed A. Samir

Operation General Manager SAHARA OIL & GAS

PETROLEUM ENGINEERING DEPARTMENT FACULTY OF ENGINEERING CAIRO UNIVERSITY February 2017

Engineer's Name: Date of Birth: Nationality: E-mail: Phone: Address: Registration Date: Awarding Date: Degree: Department:	ngineer's Name:Ahmed Galal Al-Qassaby Al-Metwalate of Birth:23/1/1991ationality:Egyptian•mail:Ahmed.galal85@yahoo.com•mail:Ahmed.galal85@yahoo.com•hone:+2 01148059662ddress:Mansoura-Egyptegistration Date:1/10/2012warding Date:2017egree:Master of Scienceepartment:Petroleum Engineering					
Supervisors: Examiners:	Prof. Mohammed H. Sayyouh Prof. Ahmed H. El-Banbi Porf. Mohamed H. Sayyouh Porf. Ahmed H. El-Banbi Prof. Khaled A. Abdel-Fattah	(Thesis Main Advisor) (Advisor) (Internal Examiner)				
	Dr. Mohamed A. Samir - SAHARA OIL & GAS (Ope	(External Examiner) (External Examiner) (External Manager)				

Title of Thesis:

A Framework for Rapid Numerical Well Test Analysis Using an Open Source Simulator

Key Words:

Well Testing; Simulation; Unstructured Grids; MRST; Eclipse **Summary:**

In conjunction with the Open Porous Media (OPM), SINTEF Company in Oslo have released the Matlab Reservoir Simulation Toolbox (MRST) aiming to function as an efficient platform for implementing new ideas and discretization methods in reservoir simulations applications. MRST has been developed as an open source program under the General Public License (GPL¹), and in this thesis, the author intends to modify the existing source code of MRST (Release: 2016b) to implement an unstructured gridding algorithm has the ability to conform the basic geological features of the reservoir as an extension to the black oil framework. The governing equations are evaluated using the finite-volume method and the system of equations is solved fully-implicitly using the Newton-Raphson method. The created model in this thesis is used to build a numerical well testing models to tune the analytical solution results, validated versus the recorded pressure signals from the test, the analytical type curves, and Schlumberger reservoir simulator; Eclipse, to give a better representation for the geological features and the petro-physical properties of the reservoir using an easy procedure to construct the grid and to assign these properties.

¹ <u>http://www.gnu.org/licenses/gpl.html</u>

Application Cases: Numerical Well Testing

Pressure Transient Testing

John Lee Peterson Chair and Professor of Petroleum Engineering Texas A&M U.

> John B. Rollins Senior Technical Consultant International Business Machines Corp.

> > John P. Spivey Principal Reservoir Engineer Schlumberger

2003

To validate versus the pressure signals and Eclipse, we used: <u>Normalized Root Mean Square Error (NRMSE)</u>

To do sensitivities over the analytical solution parameters, we used: <u>Mean Absolute Relative Error (MARE)</u>

Hybrid Grid, Single Well, 7 Cases Compared to Eclipse Cartesian Grid

Case Test Type Phase Draw Down Oil 1 Variable Rate 2 Oil Draw Down Oil 3 Build Up Build Up After 4 Variable Rate Oil Draw Down 5 Build Up Gas 6 Injectivity Water 7 Fall Off Water

Eclipse Cartesian Grid

of Grids 193, 1 to 3 Newton Iter./T.S., CPU Time=4 Secs

Indexing

193	192	191	190	189	188	187	186	185	184	183
182	2 181	180	179	178	177	176	175	174	173	172
171	170	169	168	167	166	165	164	163	162	161
160) 159	158	157	156	155	154	153	152	151	150
149) 148	147	146	139 14 141 1 145 1441	0 129 130 421351361311 431381371341	0 122 12 32125126 33128127 1	23 121 24	120	119	118
117	116	115	114	104 1051 1081 113 1091 1121	0692 93 95 9 07 94 9 10101 9 111031 02 00 9	6 82 88 7 85 84 T 8 8 88 89 9 91 90	86 81 87	80	79	78
77	76	75	74	67 68 6 71 7 73 72	9 57 58 61 6 70 60 59 64 6 66 65	2 50 51 3 53 52 56 5	49 5	48	47	46
45	44	43	42	41	40	39	38	37	36	35
34	33	32	31	30	29	28	27	26	25	24
23	22	21	20	19	18	17	16	15	14	13
12	11	10	9	8	7	6	5	4	6 з	2

Case_ Source	Test Type	Phase	Givens (Model Parameters)
1 Ev:2 1	Draw Down	Oil	Qo = 250 STB/D, h = 69 ft, φ = 0.039, Bo = 1.136 RB/STB,
			Pi = 4,412 psia, $C_t = 17 \times 10^{-6} \text{ psi}^{-1}$, $r_w = 0.198 \text{ ft}$, and $\mu = 0.8 \text{ cp}$
	A 3-hour		1 st hour averaged 478.5 STB/D; 2 nd hour, 319 STB/D;
2 Ex:23	Variable Rate Draw	Oil	and 3 rd hour, 159.5 STB/D,
	Down		h = 10 ft , ϕ = 0.12, Bo = 1.2 RB/STB, Pi = 3,000 psia,
	2000		$C_t = 48 \times 10^{-6} \text{ psi}^{-1}$, $r_w = 0.25 \text{ ft}$, and $\mu = 0.6 \text{ cp}$
			after constant rate of 500 STB/D for 3 days
3_Ex:2.4	Build Up	Oil	h = 22 ft , φ = 0.2, Bo = 1.3 RB/STB, Pwf = 1,150 psia,
			$C_t = 20 \times 10-6 \text{ psi}^{-1}$, $r_w = 0.3 \text{ ft}$, and $\mu = 1 \text{ cp}$
			Time Interval Production Rate
			(hours) (STB/D)
	Build Up After		0 to 3 398.8
4_Ex:2.6	Variable Rate Draw	Oil	3 to 6 265.8
	Down		6 to 9 132.9
			h = 22 ft, ϕ = 0.12, Bo = 1.2 RB/STB, Ct = 4.8 x 10-5 psi-1,
			$rw = 0.25 \text{ ft}$, and $\mu = 0.6 \text{ cp}$
			$\gamma g = 0.7, Qg = 5,256 Mscf/D, tp = 2000 hrs,$
5 Ev.33	Build Lip	Gas	$z = 0.8678$, T= 640°R (180°F), h = 28 ft, ϕ = 0.18,
	Duild Op	Oas	Bg = 0.962 RB/ Mscf, Pi = 2,906 psia, $C_t = 2.238 \times 10-4 \text{ psi}^{-1}$,
			$r_w = 0.3$ ft, and $\mu = 0.01885$ cp
6 Ev:0 1	Inicotivity	Motor	Qw = -100 STB/D, h = 16 ft, φ = 0.15, Bw = 1 RB/STB,
0_ EX.9.1	injectivity	Water	Pi = 449 psia, $C_t = 7.7 \times 10-6 \text{ psi}^{-1}$, $r_w = 0.25 \text{ ft}$, and $\mu = 1 \text{ cp}$
7 Ex:0.2		Wator	Qw = -807 STB/D, h = 28 ft , ϕ = 0.25, Bw = 1 RB/STB,
'_LX.9.2		vvalei	$Pi = 2,788 psia$, $C_t = 1.18 \times 10-5 psi-1$, $r_w = 0.4 ft$, and $\mu = 1 cp$

Case_1: Validation Versus The Analytical Solution

NRMSE*: Normalized Root Mean Square Error.

Sensitivity over Reservoir Permeability to Give Minimum Error:

1- Analytical Solution, K= 12.5 mD 2- Model , K = 12.5 mD

Sensitivity over Skin Factor to Give Minimum Error:

1- Analytical Solution, S= 1.43 2- Model , S = 1.5

Case_3: Validation Versus The Analytical Solution

NRMSE*: Normalized Root Mean Square Error.

Sensitivity over Reservoir Porosity to Give Minimum Error:

1- Analytical Solution, ϕ = 0.15 2- Model , ϕ = 0.19

Hybrid Grid, Single Well + Hyd. Frac., 1 Case Compared to Eclipse Cartesian Grid

Indexing

															_
231	220	209	1	83	14	45	ç	99	(61	1	35	24	13	2
232	221	210	1	84	1	46	1	00		62	:	36	25	14	3
233	222	211	1	85	1	47	1	01		63		37	26	15	4
234	223	212	187	188	149	150	103	104	65	66	39 38	40	27	16	5
		++	186	189	140	154	102	111	72	73	43	44	$\rightarrow -$		
235	224	213	190	193	152	156 15	7 107 10	8 113 11 343 12 11	4 69 7	74	42	45	28	17	6
	0.05		195	196	160	162 16 161 16	3 120 12 4 119	Peol	uțer	81/ 8283	47	48	29	18	7
236	225	214	194	197	159	166 16 165 16	7 117	249 12 25125 1	6 76 7 75 1	77 84 78 84	46	49	\rightarrow —		
237	226	215	199	200	170	172 17	3 130 13 4 129 13	2 133 1	36.86	89 <u>90</u>	51	52	30	19	8
			198	201	169	175	128	137	85	91	50	53	\rightarrow —		-
238	227	216	203	204	177	178	139	140	93	94	55	56	- 31	20	
			202	205	5 176	179	138	141	92	95	54	57			Ļ
239	228	217	\square	206		180		142		96		58	32	21	1
240	229	218		207		181		143		97	ĺ	59	33	22	
24	1 230	219		208		182		144		98	1	60	34	23	

Eclipse Cartesian LGR Grid

Case_8: DD-Gas, 'Fractured Well'

Case_ Source	Test Type	Phase	Givens (Model Parameters)
8_ Ex:6.2	Draw Down	Gas	$\gamma g = 0.65, Qg = 3,000 \text{ Mscf/D}, h = 60 \text{ ft}, \phi = 0.1,$ Bg = 0.7085 RB/ Mscf, Pi = 5,000 psia,Ct = 2.084 x 10-4 psi-1, rw = 0.25 ft, z = 0.991, T= 570°R (110°F), and μ = 0.01961 cp

Case_8: Sensitivities

Case_8: Validation Versus The Analytical Solution

Hybrid Grid, Single Well, 'Distance to Fault', 1 Case Compared to Eclipse Cartesian Grid

Indexing

189	178	167	156	124	92	2	84	73	62	51	40
190	179	168	157	125	93	3	22	74	63	52	41
191	180	169	158	126	94	5	23	75	64	53	42
192	181	170	159	127	95	7	25	76	65	54	43
193	182	171	160	129 130 128 132 13 128 131 13	100 3 97 98 4 96 99	101 9 103 9 102 10	28	36 77	66	55	44
194	183	172	161	136 138 13 137 14 137 14 135 142 14 141 14	9 108 109 0 107 3 105 4 104 106	110 du	30	37 78 38 78	67	56	45
195	184	173	162	146 148 14 147 15 145 151	9 114 115 0 113 116 112	118 14 117 13 119 14	32	39 79 90	68	57	46
196	185	174	163	152	120	15	34	80	69	58	47
197	186	175	164	153	121	17	36	81	70	59	48
198	187	176	165	154	122	10	37	82	71	60	49
199	188	177	166	155	123	20	39 	83	72	21 ⁶¹	50
										<u> </u>	

Hybrid Grid, Two Wells , 'Interference Test', 1 Case Compared to Eclipse Cartesian Grid

Case	Test Type	Phase
10_Ex:10.1	Interference	Oil/Water
Eclipse Cart	tesian Grid,	

Hybrid Grid, Single Well, 'Hz. Well', 1 Case Compared to Eclipse Cartesian Grid

Case	Test Type	Phase
11_Ex:12.1	Draw Down	Oil

Eclipse Cartesian Grid,

Indexing

NRMSE*: Normalized Root Mean Square Error.

Sensitivity over # of Well Segments to Give Minimum Error:

1- Analytical Solution, #= N/A 2- Model , # = 25

Case_11: Validation Versus The Analytical Solution

Case_12: DD-Oil, 'Hz. Well + 3 Transverse Fractures'

Contribution (Added Value): NWT, **SPE 105271/2007

SPE 105271

Linking Well-Test Interpretations to Full Field Simulations

Faisal M. Al-Thawad, SPE, and Jim S. Liu, SPE, Saudi Aramco, and Raj Banerjee, SPE, and Dominic Agyapong, SPE, Schlumberger

Figure 2: Study Workflow

Thank You