Using Heterogeneous Computing for Solving Vehicle Routing Problems

GPU based local search for CVRP with REFs

Geir Hasle, Oddvar Kloster, Atle Riise, Christian Schulz, Morten Smedsrud
SINTEF ICT

21. June 2010
Outline

1. Outline
2. Motivation: Why heterogeneous computing
3. Introduction to GPU
4. CVRP and REFs
5. Three-opt on GPU
6. Summary
Motivation

Transportation management

- Goal: good solutions computed fast, based on thorough exploration of search space
- Increase in computing power \Rightarrow existing methods faster or more exploration
- Better algorithms, methodological improvements

Variety of methods for solving VRP

- Metaheuristics
- Heuristics based on exact methods and hybrid methods
- Variants and hybrids of large neighbourhood search
- Variable neighbourhood search
- Iterated local search
Motivation cont’d

Parallelism often occurs naturally in the methods

- Algorithmic level, metaheuristics
- Iteration level, neighbourhood evaluation (generation)
- Solution level

Parallel platforms

- Traditional supercomputers: Cluster (large number) of CPUs
 High level of independence, can perform basically independent tasks ⇒ Task parallelisation
- Parallel methods in optimisation not new, but most focus on task parallelisation (according to Crainic 2008)
- What about the new multi-core CPUs
- What about the GPUs
Moore’s law

The number of transistors that can be placed inexpensively on an integrated circuit doubles every two years.

- 1971 (4004), 2300 transistors, 1 x 0.000740 GHz
- 2004 (Pentium 4 Prescott), 125 000 000 transistors, 1 x 4 GHz
- 2008 (Core i7 Quad), 731 000 000 transistors, 4 x 3.33 GHz

Picture from http://en.wikipedia.org/wiki/Moore's_Law
What happened?

Increasing frequency hits three major problems (walls): Memory, ILP, Power density (power/area)

Memory

- Memory speeds did not increase as fast as core frequencies
 Processor can wait hundreds of clock cycles for data/instructions from main memory
- Wait can be reduced by larger caches and instruction level parallelism

Instruction level parallelism

- Difficult to find enough parallelism in instructions stream of single process to keep cores busy
Multi-core

Power density (heat)

- Increase in frequency leads to increase in power density
- CPU has higher power density than a cooking plate
- Using about 80% of frequency halves power consumption

⇒ Use of 2 cores with ~ 80% of frequency: same power consumption, ~ 160% performance

But: Deep pipelines, heavy ILP use and huge caches drain a lot of power
⇒ no 100 core processor

Acceleration cores

- Shallow pipelines, low or no ILP, small or no caches
- Power efficient
Heterogeneous computer

Classical supercomputer consist of many processors, maybe with dual/quad core
⇒ Consume lot of power, maintenance, expensive

But: Commodity PCs nowadays have multi-core CPUs and one (or more) GPU (has acceleration cores)
⇒ Cheap, high performance if it can be harnessed

Heterogeneous computer: Tightly coupled system of processing units with distinct characteristics
GPU

- Background: Computer graphics
- Nowadays: General purpose GPU
- Massively parallel: 512 cores
- High memory bandwidth
- Typical speedup: 10-50 (to CPU)
- Data parallelism: Typically same task performed by each core on different pieces of data
- NVIDIA Fermi:
 - IEEE 754-2008 floating point standard
 - Improved double precision performance (now half of single precision)
Programming GPU

Direct Compute

- Part of Microsoft DirectX
- Debugger (NVIDIA) on Windows

OpenCL (AMD, NVIDIA)

- Extension of C, reminiscent of GLSL
- Relatively immature, but improves as we speak

Cuda (NVIDIA)

- Large subset of C++, can share code with CPU code
- Mature
- Debugger on Linux and Windows
GPU in Science

GPU usage in other Sciences/Industry
- PDE / Simulation: Shallow water
- Medicine: Automated ultrasound imaging system
- Finance: Analyses the entire U.S. equity options market in real time

GPU in Optimisation
- Knapsack
 M. Scherger, Two Parallel Algorithms to Solve the 2D Knapsack Problem Using GPUs, 2008
 D. M. Quan, and L. T. Yang, Solving 0/1 Knapsack Problem for Light Communication SLA-Based Workflow Mapping Using CUDA, 2009

- Evolutionary algorithms
 Harding, S. and W. Banzhaf, Fast Genetic Programming on GPUs, 2007

- Neighbourhood evaluation
 Luong, T.V., N. Melab, and E.-G. Talbi, Parallel Local Search on GPU, 2009

⇒ Good point in time to start using it
Capacitated Vehicle Routing Problem

Given:
- A depot and number of customer nodes
- Length/Cost c_{ij} between nodes
- Capacity of vehicle(s) C
- Demand of customers $d_i \leq C$
Capacitated Vehicle Routing Problem

Given:
- A depot and number of customer nodes
- Length/Cost c_{ij} between nodes
- Capacity of vehicle(s) C
- Demand of customers $d_i \leq C$

Wanted: Route(s)
- Each customer is visited once
- Each route visits depot
- Minimal length/cost
- Capacity feasible
Model

- Solution represented as a giant tour

- Use of classical resource extension functions to model capacity constraint
Simple method: Local search with 3-opt move

Initial solution
- Star solution: A single route to each customer

3-opt move
- Remove 3 connections/edges ⇒ 4 segments
- Reconnect in all possible ways ⇒ 7 possibilities
 \[1 - 3 - 2 - 4, \ 1 - 3 - \bar{2} - 4, \ 1 - \bar{3} - 2 - 4, \ 1 - \bar{3} - \bar{2} - 4, \ \\
 1 - 2 - \bar{3} - 4, \ 1 - \bar{2} - 3 - 4, \ 1 - \bar{2} - \bar{3} - 4\]

⇒ Nearly \((7/6)(n - 1)(n - 2)(n - 3)\) moves
 \(n: \text{number of nodes in solution}\)
Classical Resource extension function

Resource constraints modeled by resource consumption

- Resource: cost, time, load, distance, ...
- Resource vector \(\mathbf{t} \in \mathbb{R}^n \)
- Each node has a associated resource interval \([a_i, b_i]\)
- Change of resource consumption from \(i\) to \(j\): \(f_{ij} : \mathbb{R}^n \to \mathbb{R}^n\)
- A path is feasible if for each node \(i\) there exists a resource vector \(\mathbf{T}_i \in [a_i, b_i]\) s.th.
 \[
 f_{i,i+1}(\mathbf{T}_i) \leq \mathbf{T}_{i+1}
 \]

- Classical REF:
 \[
 f_{ij}(\mathbf{T}) = \mathbf{T} + \mathbf{t}_{ij} \quad \text{or} \quad f_{ij}(\mathbf{T}) = \max(a_j, \mathbf{T} + \mathbf{t}_{ij})
 \]

CVRP (capacity): Classical REF with
\[
 a_i = 0, \quad b_i = C,
 \quad t_{ij} = d_j \text{ for } j \text{ a customer}, \quad t_{ij} = -C \text{ for } j \text{ depot}
\]
Why classical REF? Simple, can build segment hierarchy

Segment - Hierarchy

Aggregation:
- \([3-6]\) contains: \(3 \rightarrow 5\), \(3 \rightarrow 6\) and \(4 \rightarrow 6\) and inverse
- \([0-9]\) contains: \(0 \rightarrow 6\), \(0 \rightarrow 9\) and \(3 \rightarrow 9\) and inverse
Segment - Hierarchy cont’d

- Why segment hierarchy? Gives constant time feasibility check

 Example: Exchange two nodes, e.g. 5 and 20:

 path up to first: 0 → 4: 0 → 3, 3 → 4
 reconnect first: 4 → 20:
 20 → 6:
 path to second: 6 → 19: 6 → 9, 9 → 18, 18 → 19
 reconnect second: 19 → 5:
 5 → 21:
 path to end: 21 → 32: 21 → 27, 27 → 32

- Maximum number of segments in one path: 2^l-1 (l: depth of hierarchy)
- How to do feasibility check with segments, see paper(s) by Irnich
- Effort to create hierarchy: $O(n^{2^l}/(2^l-1))$
Parallel local search

Why parallelize local search

- Local search is an essential part of more advanced strategies such as metaheuristics
- Embarrassingly parallel: Moves independent from each other
 ⇒ Potential for significant speed up
What we do on the GPU

Transfer of data GPU ↔ CPU slow ⇒ try to minimize/avoid it

On GPU

- Once:
 - Create neighbourhood

- Each iteration:
 - Create hierarchy
 - Evaluation of capacity constraint and length objective for each move
 - Choosing best move

- Neighbourhood and hierarchy live whole time on GPU, no transfer

- Transfer once: constraint & objective data

- Transfer per iteration: move, solution (for now)
Does it pay?

Early timing, only gives indication:

- CPU code is not optimized
- GPU code is not optimized

GPU is fast is known, real task: Efficient usage of GPU hardware
Why optimize GPU code

Example reduction, taken from NVIDIA CUDA SDK whitepaper

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Time (2^{22} ints)</th>
<th>Bandwidth</th>
<th>Step Speedup</th>
<th>Cumulative Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel 1:</td>
<td>8.054 ms</td>
<td>2.083 GB/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleaved addressing with divergent branching</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 2:</td>
<td>3.456 ms</td>
<td>4.854 GB/s</td>
<td>2.33x</td>
<td>2.33x</td>
</tr>
<tr>
<td>Interleaved addressing with bank conflicts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 3:</td>
<td>1.722 ms</td>
<td>9.741 GB/s</td>
<td>2.01x</td>
<td>4.68x</td>
</tr>
<tr>
<td>Sequential addressing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 4:</td>
<td>0.965 ms</td>
<td>17.377 GB/s</td>
<td>1.78x</td>
<td>8.34x</td>
</tr>
<tr>
<td>First add during global load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 5:</td>
<td>0.536 ms</td>
<td>31.289 GB/s</td>
<td>1.8x</td>
<td>15.01x</td>
</tr>
<tr>
<td>Unroll last warp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 6:</td>
<td>0.381 ms</td>
<td>43.996 GB/s</td>
<td>1.41x</td>
<td>21.16x</td>
</tr>
<tr>
<td>Completely unrolled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel 7:</td>
<td>0.268 ms</td>
<td>62.671 GB/s</td>
<td>1.42x</td>
<td>30.04x</td>
</tr>
<tr>
<td>Multiple elements per thread</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Local Search with 3opt - Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Our</th>
<th>Best</th>
<th>#Lt.</th>
<th>Time(s)</th>
<th>Nbh size</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-n16-k8</td>
<td>473.782</td>
<td>451.335</td>
<td>7</td>
<td>0.109</td>
<td>28420</td>
</tr>
<tr>
<td>P-n20-k2</td>
<td>233.995</td>
<td>217.416</td>
<td>18</td>
<td>0.327</td>
<td>59052</td>
</tr>
<tr>
<td>P-n23-k8</td>
<td>560.598</td>
<td>531.174</td>
<td>13</td>
<td>0.281</td>
<td>92708</td>
</tr>
<tr>
<td>E-n30-k3</td>
<td>508.139</td>
<td>535.797</td>
<td>31</td>
<td>1.013</td>
<td>215992</td>
</tr>
<tr>
<td>B-n35-k5</td>
<td>1403.96</td>
<td>956.294</td>
<td>32</td>
<td>1.432</td>
<td>350812</td>
</tr>
<tr>
<td>P-n40-k5</td>
<td>506.039</td>
<td>461.726</td>
<td>37</td>
<td>2.290</td>
<td>532532</td>
</tr>
<tr>
<td>F-n45-k4</td>
<td>727.746</td>
<td>723.541</td>
<td>43</td>
<td>3.598</td>
<td>768152</td>
</tr>
<tr>
<td>B-n50-k7</td>
<td>745.160</td>
<td>744.228</td>
<td>44</td>
<td>4.890</td>
<td>1064672</td>
</tr>
<tr>
<td>A-n60-k9</td>
<td>1407.09</td>
<td>1355.800</td>
<td>56</td>
<td>10.731</td>
<td>1868412</td>
</tr>
<tr>
<td>P-n70-k10</td>
<td>915.380</td>
<td>829.933</td>
<td>60</td>
<td>18.301</td>
<td>2999752</td>
</tr>
<tr>
<td>A-n80-k10</td>
<td>1833.49</td>
<td>1766.500</td>
<td>75</td>
<td>34.391</td>
<td>4514692</td>
</tr>
<tr>
<td>E-n101-k8</td>
<td>990.737</td>
<td>828.737</td>
<td>97</td>
<td>90.523</td>
<td>9193800</td>
</tr>
<tr>
<td>M-n151-k12</td>
<td>1124.44</td>
<td>1043.410</td>
<td>144</td>
<td>475.321</td>
<td>31185700</td>
</tr>
<tr>
<td>M-n200-k16</td>
<td>1402.67</td>
<td>1499.780</td>
<td>190</td>
<td>1585.751</td>
<td>72998772</td>
</tr>
</tbody>
</table>

SINTEF ICT Local Search for CVRP on GPU 21. June 2010 22/24
Summary & Future Work

Summary

- Your office PC is a heterogeneous computer
- Proper algorithms can harness CPU+GPU power
- Early results in local search for CVRP promising

Future Work

- Optimise code
- Larger solutions: memory, number of tasks
- More advanced strategies such as metaheuristics
- Keep CPU and GPU busy
Thank you for your attention!