

HYDROGENS ROLLE LONGYEARBYENS ENERGIFORSYNING

Anders Ødegård Jonas Martin

Renewable energy

- Wind
- Solar
- Geothermal
- Ocean (tidal, wave, ...)
- Hydropower
- Bioenergy

.....

Vary in

• Seconds/hours

• Days

• Weeks

• Seasons

SINTEF

Solar power

Fraunhofer ISE

ENERGY CHARTS Home Energy Downloads Information

Vary in

Electricity production in Germany in week 33 2016

👔 usage tips

month

week:

33

gas

print

- Seconds/hours
- Days
- Weeks
- Seasons

Datasource: 50 Hertz, Amprion, Tennet, TransnetBW, ENTSO-E Last update: 28 Aug 2016 00:13

Solar power

Fraunhofer ISE **ENERGY CHARTS** Home Energy Downloads Information

Vary in

Electricity production in Germany in week 33 2016

🍘 usage tips

month

week:

33

gas

print

- Seconds/hours
- Days
- Weeks
- Seasons

Datasource: 50 Hertz, Amprion, Tennet, TransnetBW, ENTSO-E Last update: 28 Aug 2016 00:13

November – March....

Renewable energy – distribution (& storage)

- Surplus and shortage
- Flow/export between regions

Alternatives to increase flexibility in the power system

- Smart grid demand side management
- Transmission and distribution expansion (import/export)
- Energy storage
 - Thermal (e.g. molten salts, phase-transition materials)
 - Electrochemical (e.g batteries, capacitors) MW plants
 - Chemical (e.g hydrogen: Power-to-gas, storage or processing)
 - Mechanical (e.g. pumped hydro, flywheel) GW plants

🕥 SINTEF

Large Scale Energy Storage Options to address `grid storage' are limited

segmentation of large-scale (electrical) energy storage

key statements:

- Battery storage applications are limited in the hour range
- Energy storage >100 MW can only be addressed by Pumped Hydro, Compressed Air (CAES) and Hydrogen
- The potential to extend pumped hydro capacities is very limited
- CAES has limitations in operational flexibility and capacity

Hydrogen is the only option to cover energy capacities > 10 GWh

() SINTEF

Challenges at Svalbard

- Large variations between seasons, summer winter, production and consume
- Supply safety extremely important, requires much back-up power

• Harsh climate

© VisitNorway

Power consumption of Longyearbyen

() SINTEF

Longyearbyen connected to mainland

- ~ 5 billion NOK investment
- No need for energy storage (back-up?)
- ~ 400 mill NOK/year

Longyearbyen powered by wind

- 100 stk à 3 MW, 115 m diameter
- ~ 4 billion NOK
- Area covering more than 1200 soccer fields

Need for energy storage

- Storage requirement 8.5 GWh
- ~ 100 000 Tesla S
- LH_2 -plant ~ 1.5 billion NOK
- ~ 530 mill NOK/year
- Batteries ~ 2-400 \$/kWh
 => ~ 10-20 billion NOK

From 0-100% wind

- Wind-diesel hybrid
- Increasing costs vs decreasing CO₂
- Competitive with cable up to about 90 % self sufficiency

Longyearbyen powered by the sun

- Possibly low cost electricity
- 210 000 panels, ~ 57 MW_p covers May to August
- ~ 0.7 billion NOK
- Area covering more than 120 soccer fields
- Problem from November to March...

Longyearbyen powered by the sun

- Possibly low cost electricity
- 210 000 panels, ~ 57 MW_p covers May to August
- ~ 0.7 billion NOK
- Area covering more than 120 soccer fields
- Problem from November to March...

Import of hydrogen

- From mainland
- 1 billion NOK
- 35 NOK/kg H₂
 => ~ 290 mill NOK/year

5-6 000 tonn H₂ per year

Fill level H2 Tank [MWh]

- From mainland
- 1.5 billion NOK
- 35 NOK/kg H₂
- => ~ 270 mill NOK/year

7.000 6.000 5.000 4.000 3.000 2.000 100 1.000 F S 0 Ν Μ Α Μ А D Month Tank fill level Times of import total energy demand per day [MWh]

[MWh]

S

0

total energy demand per day [MWh]

А

Month

Ν

D

SINTEF

7.000

6.000

5.000

4.000

3.000

2.000

1.000

Fill level H2 Tank [MWh]

- From mainland
- 1.5 billion NOK
- 35 NOK/kg H₂
- => ~ 270 mill NOK/year

With recovery of FC losses => heat, another ~20 mill NOK/year saved. 19

F

Tank fill level

Μ

A

M

Times of import

Summary

- Renewable, zero emission
 Svalbard is possible
- Many relevant sources/technologies
 - practical, economical and environmental limitations...
- Some kind of mix probably the best
- => Study and early small scale demonstration to find the optimal solution.

	CO2-utslipp (tonn/år)	Strømpris (kr/kWh)	Investeringskostnad (i millioner kr)		Årlig kostnad (i millioner kr)
D ieselaggregat	60 000	1,80		30	200
Sjøkabel	0	3,60		5 000	400
Vind + H ₂	0	4,80		5 500	530
H ₂ -import	0	2,60		1 000	290
Sol + H ₂ -import	0	2,40		1 500	270 (250)

Figure: Knut Gangåssæter/SINTEF

Teknologi for et bedre samfunn