FINN: A Framework for Fast, Scalable Binarized Neural Network Inference on Reconfigurable Logic

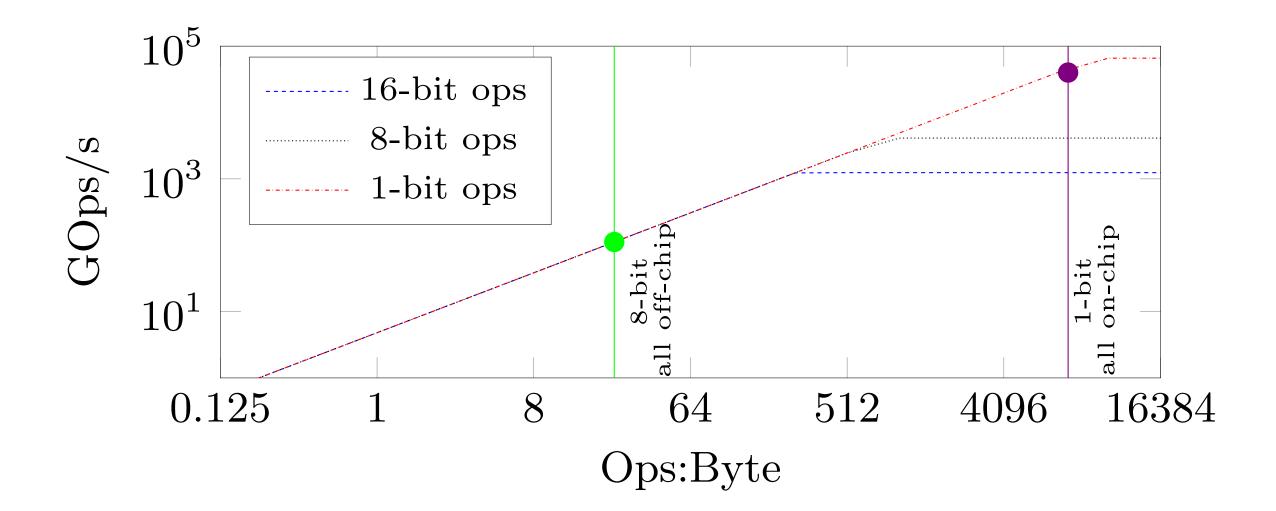
Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre and Kees Vissers

Binarized Neural Networks (BNNs)

- Almost all arithmetic is performed using two values: {-1, +1}
- Trained via backprop on GPU, weights constrained during training
- Convolutional, fully-connected, pooling and batchnorm layers
- Competitive accuracy for image classification tasks

FPGA Potential Performance on BNNs

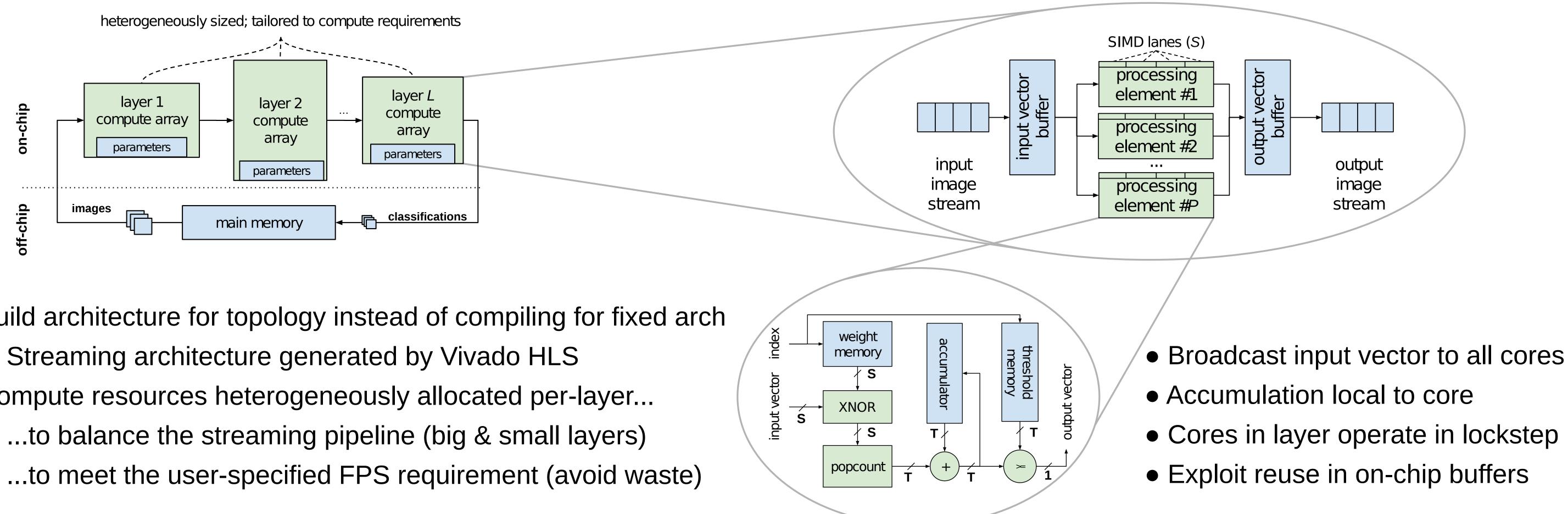
- Multiplications \rightarrow XNOR, additions \rightarrow popcount
- FPGA peak for binary ops is *much* higher than FP32 or INT8
 - ZU19EG: 66 TOPS binary, 4 TOPS INT8, 0.3 TOPS FP32
- Keeping all weights on-chip greatly increases arithmetic intensity
 - Avoid power and performance cost of most off-chip accesses



MNIST	99%	99%
SVHN	98%	97%
CIFAR-10	92%	90%
ImageNet (AlexNet arch)	80% top-5	69% top-5
ImageNet (ResNet-18 arch)	89% top-5	73% top-5
ImageNet (GoogLeNet arch)	90% top-5	86% top-5
ImageNet (DoReFa-Net)	56% top-1	50% top-1

Generating BNN Inference Accelerators with FINN

Compute Arrays: SIMD & Multi-core



• Build architecture for topology instead of compiling for fixed arch

• Streaming architecture generated by Vivado HLS

Top Level: Heterogeneous & Streaming

- Compute resources heterogeneously allocated per-layer...
 - ...to balance the streaming pipeline (big & small layers)
 - ...to meet the user-specified FPS requirement (avoid waste)

Experimental Evaluation on ZC706

BNN Topologies & Scenarios

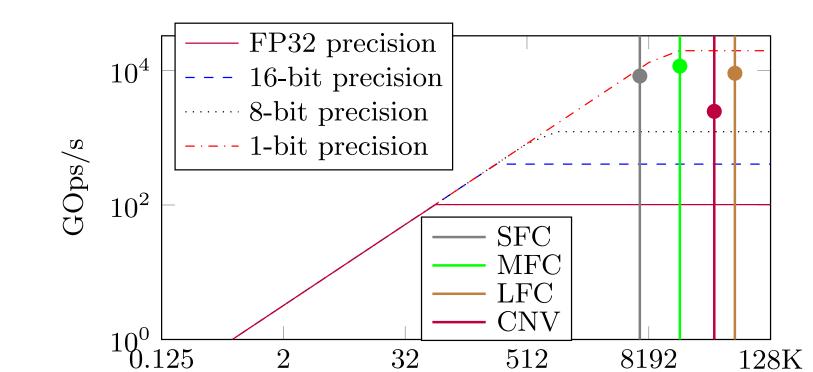
• Three BNN topologies:

3

- SFC fully-connected, 95.8% on MNIST
- LFC fully-connected, 98.4% on MNIST
- CNV VGG16-like convolutional
 - 80.1% on CIFAR-10, 94.9% on SVHN

Name Thr.put Latency LUT BRAM $P_{\rm chip}$ (FPS)(W)(s)SFC-max 12361 k 0.31 91131 7.34.5LFC-max $1561 \mathrm{k}$ 2.4482988 3968.8CNV-max 21.9 k 283462531863.6SFC-fix $12.2 \mathrm{k}$ 24051550.416

Achieved Performance vs Roofline



Ops:Byte

Key Metrics

114.5

152.5

- Two use-case scenarios:
 - max : maximum FPS (e.g. datacenter)
 - fix : 9000 FPS (e.g. embedded)
- Up to 12.3 million MNIST images per sec

5636

29274

• 11.6 of 19.7 TOPS (68% of peak) • Up to 12.2 thousand CIFAR-10 images per sec

0.8

2.3

 P_{wall}

(W)

21.2

22.6

11.7

8.1

7.9

10

- Even mid-range FPGAs can perform trillions of binary operations per second, which can be harnessed for BNN inference
- Unprecedented image classification rates at <25 W power and <1 ms latency for MNIST and CIFAR-10 datasets
- Future work will focus on larger topologies (ImageNet), mixed precision and supporting off-chip parameters

 $12.2 \mathrm{k}$

11.6 k

282

550

LFC-fix

CNV-fix

