
Cell nuclei segmentation using deep convolutional neural networks
Proof of concept

Ole-Johan Skrede, Fritz Albregtsen and Håvard E. Danielsen

Department of Informatics — University of Oslo
Institute for Cancer Genetics And Informatics — Oslo University Hospital

Problem description
We look into the problem of segmenting cell nuclei in images of histological sections from colorectal
cancer tissue. These images are difficult to segment for a number of reasons:

•We are only interested in non-overlapping, in-focus nuclei.

• The background is very heterogenous and contains disruptive objects.

• The nuclei are often clustered, and have a wide variety of shapes, light intensities and texture.

Method overview
Artificial neural networks have during the last few years been established as the de facto standard for
solving high-level computer vision problems; segmentation being no exception (Lecun et al., 2015).
Broadly speaking, the method consists of a hierarhical classification structure, where feature extrac-
tor parameters are computed with mathematical optimization rather than being hand-engineered. This
makes the method more data-driven and less a priori dependent, which aids the classification of pixels
based on subtle, high-level features in the image. The aforementioned properties are highly desirable
when segmenting images of colon cancer nuclei.
A common approach to segmentation with neural networks is to extend a full-image classifying net-

work to pixel-wise classification with some kind of upsampling in the deeper layers. Until now, we
have e.g. used the well-known VGG (Simonyan and Zisserman, 2015) and ResNet (He et al., 2015)
architectures as base networks, and the results shown here use atrous convolution and interpolation in
the upsampling (Chen et al., 2016).
The neural network produces probability maps that represent the probability that a pixel belongs to

a nucleus. The probability results are binarized using mathematical morphology and random walks.

Figure 1: Illustration of convolution (top), and network architecture (bottom).

Results
The methods are tested on a dataset consisting of 11814 manually segmented images from 162 different
cases. The dataset is partitioned into 2/3 for training, 1/6 for validation, and 1/6 for testing.
The method is tested on a dataset with manually segmented images. We train the network on 8473

images, and evaluate the method on 1661 images (from different patients than in the training set).
The results are obtained using a NVIDIA Titan X (Pascal) GPU, and we are able to process about

10 frames per second during training, and about 3 frames per second during evaluation. In training
time, we use cropped sections of 321 × 321 pixels, and the evaluation is carried out on the full frame
(1040× 1388 pixels).
We evaluate our methods on the test set, and compute several evaluation measures from three ma-

jor categories: object detection, object-level segmentation agreement, and object-level shape similarity.
The difference being that for object-level measures, we compare single nucleis: the reference with the
proposal with largest overlap, and the proposal against the reference with the largest overlap. For
object detection, we say that objects are true positive, false positive or false negative based on overlap
fraction between reference and proposed segmented nuclei, and count these numbers for all the frames.
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Figure 2: Distributions of various segmentation evaluation measures.

Object detection Value
Sensitivity 0.65
F1-score 0.76
Object-level segmentation Mean Median
Sensitivity 0.90 0.93
Specificity 0.95 0.97
Rand accuracy 0.93 0.95
Jaccard index 0.80 0.85
AUC 0.93 0.94
Dice similarity 0.88 0.91
Object-level shape similarity Mean Median
Hausdorff distance 3.56 3.16

Table 1: Segmentation evaluation. Object-level segmentation is computed from averages from the distributions shown in
Figure 2. Corresponding distributions are used to compute the object detection, and object-level shape similarity measures.

Figure 3: Left: Example input image with outlined annotations: green for reference and red for proposal segmentations,
yellow for overlap. Right: Corresponding heatmap representing the probability of a pixel belonging to a nucleus. The
proposed segmentations on the images to the left are the results of the binarization of the corresponding images to the right.

Discussion
As a proof of concept, the results are encouraging. The method shown here is able to differentiate be-
tween in focus and out-of-focus nuclei, assigning high probabilities to the former, and low to the latter.
That being said, there is still room for improvements, both on the neural network, and in the probability
binarization process.
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