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Introduction

Modern Computer Aided Design (CAD) systems are currently based on two
complementary representations of curves and surfaces, according to the
manipulation they are are involved in: implicit and parametric
representations. Actually:

I in the former, the points x belonging to a specific curve or surface must satisfy an
algebraic equation of the form q(x) = 0;

I in the latter, each choice of one (resp. two) parameters determines a certain point
of a curve (resp. surface), that is x = p(t) (resp. x = p(s, t)).

x2 + y 2 + z2 = r 2 ←− −→


x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ

Exact and approximate implicitisation

It is well known that for a parametric rational hypersurface (here: curves in 2D,
surfaces in 3D) it is possible to compute the respective implicit form in a process
called implicitisation. Since the two representations are complementary, several
methods for the passage between them have been developed through the years.

I In elimination theory, the problem of implicitisation is solved by the elimination
of the parametric variables. The result is a curve or surface represented by a single
polynomial. There are different computational challenges:
. Additional solutions. The computed implicit polynomial may contain additional

factors respect to the implicit equation of the algebraic variety. Numerically, this
undesired effect may be unsolvable due to floating point representation.

. Numerical stability. While in CAGD (Computer Aided Geometric Design)
rational parametric curves and surfaces are mostly written in terms of Bernstein
polynomials, the traditional techniques of implicitisation are based on monomial
bases. The passage between the two bases is highly numerically instable.

. High polynomial degrees.The exact implicit representation may be
characterized by a high degree, making this form computational expensive and
contributing to the numerical instability.

. Self-intersections and unwanted branches. This problem is not directly
connected to the use of a specific technique of implicitisation, but to the exact
implicit form itself.

I In approximate implicitisation (see [1] and [2]), new algorithms for an
‘‘accurate’’ single polynomial approximation are introduced on common CAGD
tools such as Bézier and Bernstein polynomials.

The parametrically defined Enneper 3-degree
surface (9-degree implicit form) illustrates
strengths and weaknesses of the approximate
implicitisation by a single polynomial.

Exact and approximate piecewise implicitisation

Approximate implicitisation can be per-
formed piecewise by dividing the model
into smooth components. This approach
is of great interest in applications such
as computer graphics, where the models
usually cannot be described by means of
a single polynomial.

In this example, each of the components
of the teapot is a bicubic Bezier compo-
nent, with bidegree (3,3).

The main application of implicitisation in computer graphics is that it is much faster
to ray trace implicit representations than parametric representations. Ray tracing is
a high quality rendering method where it is possible to achieve photorealism.
Despite the great potential of this technique, one problem is a lack of regularity
between the components when computed or approximated non-simultaneously.

Tensor-product B-splines and LR-splines

Traditional B-splines and NURBS are formulated, in an n-dimensional space, as
tensor products of univariate B-splines. Therefore, a refinement in one of the
univariate B-splines will cause the insertion of an entire new row or column of knots
in the multivariate B-spline, increasing computational complexity and leading to an
unnecessary data explosion.

Locally Refined B-splines (LR B-splines) [3, 4] are an innovative approach for a
computationally convenient type of refinement of B-splines.

Figure: Initial mesh (left), tensor-product refinement (middle) and truly local refinement (right).

LR B-splines are computed from
an initial set of tensor-product B-
splines by applying local refinement
algorithms, where each spline is
split only if its support is completely
traversed by the inserted meshline.
Therefore, they can be seen as a
generalization of the notion of B-
splines on tensor product meshes.

LR B-splines use on the approximate implicitisation problem

The use of LR B-splines in approximate implicitisation makes it possible to:
I Keep the degree low. A low degree is useful both from a computational

(numerical stability, computational complexity,...) and from a geometric viewpoint
(problem of extra branches when the degree is ”high”).

I Add degrees of freedom where they are needed. The ability to refine locally
ensures that the degrees of freedom are present in the area of interest (again:
numerical stability, computational complexity,...).

I Guarantee watertight models. Three-dimensional models may be affected by
small gaps. In applications such as 3D printing, a better model is required.

I Avoid self-intersection. This feature is accomplished using the first two
properties.

Question: can we establish criteria guaranteeing correct behavior for a given degree?

An application: intersection problems

An important feature of CAD systems
is their ability to perform Boolean
operations, such as the intersection
of curves/surfaces. Given two
bounded surfaces, then the intersec-
tion can be either empty or made up
of points, curves, surfaces regions,
possibly combined. The difficulty
of finding the solution depends, in
general, on the relative behavior of
the surfaces along the intersection itself.

When the curves/surfaces are available in both the parametric and implicit form (at
least one representation for each algebraic variety in the considered intersection),
the problem is simplified by the combination of the two expressions: the intersection
of 2D algebraic curves (resp. surfaces) can be reduced, from two polynomial
equations, to a single univariate (resp. bivariate) polynomial equation.

In an approximate implicitisation approach, a rational parametric surface p(s, t),
(s, t) ∈ Ω ⊂ R2, is approximated by an algebraic equation q(x , y , z) = 0 of degree
m. The composition of the implicit and the parametric representations can be
written as:

q(p(s, t)) = (DbT )α(s, t),

where b is a vector consisting of the unknown coefficients of the algebraic surface
to be found, α(s, t) is a vector consisting of rational basis functions and D is a
matrix having as elements products of m components of p(s, t) (see [5]).
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